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Several groups have recently developed large-scale computational models for signaling

networks, including T cells, cardiac myocytes, and fibroblasts1-3 . Given their large scope,

these models introduce new challenges in the model revision to improve model consistency

with heterogeneous experimental data and to incorporate newly discovered pathways.

Automating the process of developing, evaluating and validating different versions of predictive

models may enhance the speed and rigor of model revision.

Here, we developed a user-friendly framework to automatically create a logic-based

differential equation (LDE) model4, simulate the experiments, and compare the model

results with available heterogeneous data for validation in two applications:

1) We first evaluate the approach with a toy model, identifying the main reactions that

contribute to the prediction accuracy against idealized data.

2) We then apply the method to perform expanded experimental validation of our published

cardiac hypertrophy model2, quantify structural robustness, and systematically screen for

potential improvements.
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Figure 2. Identifying Main Reactions in Toy Model. The

changes in percent of agreement between measurements

and model predictions after knockout of each reaction.

Figure 5. Single Reaction Knockout on Hypertrophy Network to identify the most important reactions. A, B) The

changes in validation accuracy between literature-based experimental data (280 observations) and model

predictions after knockout of each reaction.

Figure 4. A selected results of individual validations from each validation class. In each table, the left square represents

the experimental observation (E), and the right square represents the model prediction (M). Each row is labeled as the

output that was compared to control.

Expanded Validation of Hypertrophy Model

The automated validation framework allows for a quick and user-friendly building and

validation of large-scale signaling network models. This framework can be employed by

various researchers to utilize diverse experimental data to systematically build, and revise

their model to improve its reproducibility.

Figure 3. Validation of Hypertrophy Model A) Classification of

experimental data into 4 classes B) The effect of input

reaction weight on the percent of agreement for each class

C) The percent of agreements for each data class (with

frequency) using the optimal input reaction weight (w=0.3)• Two formatted Excel spreadsheet as inputs for the automated validation software including

1) model specification and 2) measurement data.

• Responses were categorized qualitatively as as an increase, decrease, or no change

compared to control.

• Simulating corresponding experiment conditions for each defined observation with

supporting biochemical data by validation software

• Categorizing predictions based on a threshold change of ±0.001 (units of fractional

activation) compared to activation levels at the control state (no stimulation)

• Two minor modifications in previous LDE model4 by changing the reactions weight factor

from 1 to 0.9 and modifying the inhibition formula for having better predictions
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Table 1. Validation Result of Toy Model
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Figure 1. Framework Process Flow.

 


